pycuda 2013.1~git20130626-1ubuntu2 source package in Ubuntu

Changelog

pycuda (2013.1~git20130626-1ubuntu2) trusty; urgency=low

  * No change rebuild against Boost 1.54.
 -- Dmitrijs Ledkovs <email address hidden>   Tue, 29 Oct 2013 10:10:19 +0000

Upload details

Uploaded by:
Dimitri John Ledkov
Uploaded to:
Trusty
Original maintainer:
Ubuntu Developers
Architectures:
amd64 i386 all
Section:
python
Urgency:
Low Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Builds

Trusty: [FULLYBUILT] amd64 [FULLYBUILT] i386

Downloads

File Size SHA-256 Checksum
pycuda_2013.1~git20130626.orig.tar.gz 210.7 KiB 081e575a7fb255847b9bd6e38af60bddf8118300c7ef1130c4a0e21104f4b763
pycuda_2013.1~git20130626-1ubuntu2.debian.tar.gz 8.8 KiB 2149a8e533abfc28efb67a85b30ebb1e155a631bb9e4a58d154a0dd3ac3e59b0
pycuda_2013.1~git20130626-1ubuntu2.dsc 2.6 KiB 6cfae16be2b21f81f935e9f15170d29ab9b4be55b39798f5bc617b877ca2d810

View changes file

Binary packages built by this source

python-pycuda: Python module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.

python-pycuda-dbg: Python module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions build for the Python debug interpreter.

python-pycuda-doc: module to access Nvidia‘s CUDA computation API (documentation)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains HTML documentation and example scripts.

python3-pycuda: Python 3 module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains Python 3 modules.

python3-pycuda-dbg: Python 3 module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions for the Python 3 debug interpreter.